

单节高精度锂电池保护IC

SL2112 系列内置有高精度电压检测电路和延迟电路,通过检测电池的电压,电流实现对电池的过充电,过放电,过电流,短路保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

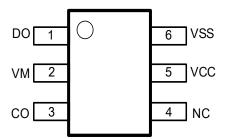
■ 功能特点

1) 高精度电压检测功能:

•	过充电检测电压	3.5 V ~ 4.5 V	精度 ±50 mV
•	过充电迟滞电压	0.2 V	精度 ±80 mV
•	过放电检测电压	2.0 V ~ 3.2 V	精度 ±100 mV
•	过放电迟滞电压	0.6 V	精度 ±120 mV

2) 放电过电流检测功能:

• 过电流检测电压	0.05V ~ 0.22 V	精度 ±30mV
● 短路检测电压	1.0 V	精度 ±200mV
3) 充电过流检测电压	-0.10V ~ -0.20V	精度 ±30mV


- 4) 负载检测功能
- 5) 充电器检测功能
- 6) 0V 充电功能
- 7) 低电流消耗:
 - 工作时
 4 (典型值) (Ta = +25°C)
 4 休眠时
 5 (Ta = +25°C)
 6 (Ta = +25°C)
- 8) 无铅、无卤素。

■ 应用领域

- 手机电池
- 儿童玩具

■ 封装

• SOT23-6

1

■ 系统功能框图

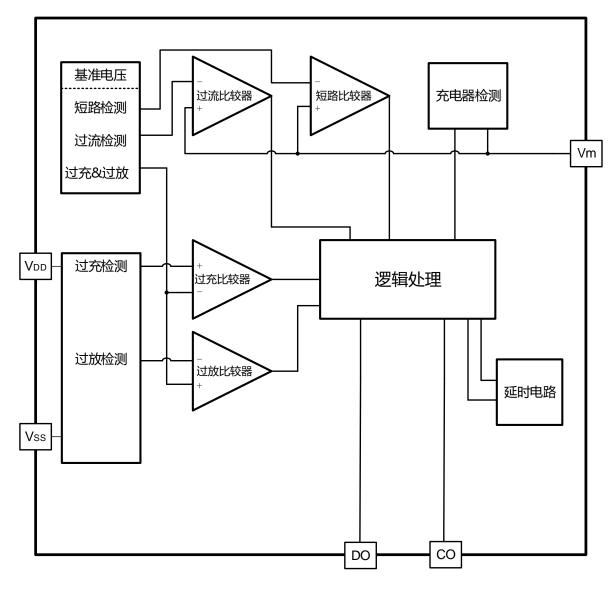
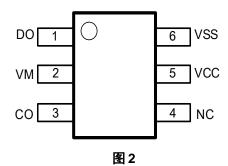


图 1



■ 产品型号

参数产品名	过充电 保护电压 Voc	过充电 解除电压 Vocr	过放电 保护电压 V _{OD}	过放电 解除电压 Vodr	放电过流 VEC1	短路 VsHORT	充电过电流 V _{CHA}
SL2112	3.750 V	3.600 V	2.10 V	2.30 V	0.200 V	1.00 V	-0.150 V

表 1

■ 引脚排列图

引脚号 符号 描述 DO 放电 MOSFET 控制端子 VM充放电电流检测端子,与充电器或负载的负极连接 2 3 CO 充电 MOSFET 控制端子 NC No connection 5 VCC 电源输入端, 与供电电源(电池)的正极连接 VSS 6 电源接地端, 与供电电源(电池)的负极相连

表 2

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

			(,
项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	-0.3 ~ 7	V
VM 端输入电压	VM	VM	VCC-15 to VCC+0.3	V
工作环境温度	TOPR	_	−40 ~ 85	°C
保存温度	T _{STG}	_	−40 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C,)

Í	页目	符号	测试条件	最小值	典型值	最大值	单位
芯片电源电压		VCC	-	1.0	-	6.0	V
正常工作电流		Ivcc	VCC=3.5V	-	2.7	-	μA
休眠电流		I _{STB}	VCC =2.0V	-	0.8	-	μA
	保护电压	Voc	VCC =3.5→4.5V	V _{OC} -0.050	Voc	V _{OC} +0.050	V
过 充	解除电压	Vocr	VCC =4.5→3.5V	V _{OCR} -0.050	Vocr	V _{OCR} +0.050	V
电	保护延时	Toc	VCC =3.5→4.5V	40	80	160	ms
	解除延时	Tocr	VCC =4.5→3.5V	5	20	40	μs
	保护电压	V _{OD}	VC5=3.5→2.0V	V _{OD} -0.100	Vod	V _{OD} +0.100	V
过 放	解除电压	V _{ODR}	VCC =2.0→3.5V	V _{ODR} -0.120	V _{ODR}	V _{ODR} +0.120	V
电	保护延时	Tod	VCC =3.5→2.0V	20	40	80	ms
	解除延时	T _{ODR}	VCC =2.0→3.5V	5	20	40	μs
	保护电压	V _{EC}	VM-VSS=0→0.20V	0.125	0.150	0.175	V
放电 过流	保护延时	T _{EC}	VM-VSS=0→0.20V	5	10	20	ms
	解除延时	T _{ECR}	VM-VSS=0.20→0V	1.0	2.0	4.0	ms
	保护电压	Vсна	VSS-VM=0→0.30V	-0.125	-0.15	-0.175	V
充电 过流	保护延时	Тсна	VSS-VM=0→0.30V	5	10	20	ms
	解除延时	T _{CHAR}	VSS-VM=0.30V→0	1.0	2.0	4.0	ms
	保护电压	Vshort	VM -VSS=0→1.5V	0.8	1.0	1.2	V
短路	保护延时	T _{SHORT}	VM -VSS=0→1.5V	150	300	600	μs
	解除延时	T _{SHORTR}	VM -VSS=1.5V→0V	1.0	2.0	4.0	ms
0V 充电器	充电 起始电压	V _{ovch}	允许向 0V 电池充电功能	1.2	-	-	V

表 4

■ 功能说明

1. 过充电状态

任意一个电池电压上升到 Voc 以上并持续了一段时间 Toc, CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这就称为过充电状态。所有电池电压降低到过充电解除电压 VocR 以下并持续了一段时间 TocR,就会解除过充电状态,恢复为正常状态。

进入过充电状态后,要解除过充电状态,恢复正常状态,有两种方法:

- 1) 无论是否连接充电器,由于自放电使电池电压降低到过充电解除电压 Voca 以下时,过充电状态释放,恢复到正常工作状态。
- 2) 连接负载,如果 Vock< VCC < Voc, Vvm> VEC,恢复到正常工作状态,此功能称作负载检测功能。

2. 过放电状态

任意一个电池电压降低到 Vop 以下并持续了一段时间 Top, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这就称为过放电状态。所有电池电压上升到过放电解除电压 Vop 以上并持续了一段时间 Top, 就会解除过放电状态,恢复为正常状态。

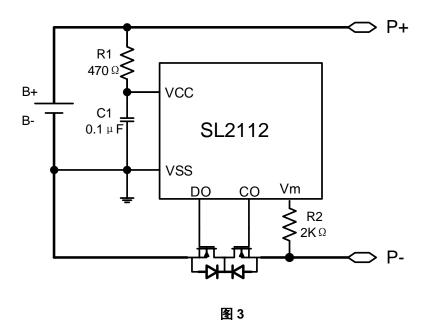
进入过放电状态后,要解除过放电状态,恢复正常状态,有三种方法:

- 1) 连接充电器,若 VM 端子电压低于充电过流检测电压(V_{CHA}),当电池电压高于过放电检测电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM 端子电压高于充电过流检测电压(V_{CHA}),当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,如果电池电压自恢复到高于过放电解除电压(VODR)时,过放电状态解除,恢复到正常工作状态

3. 放电过流状态

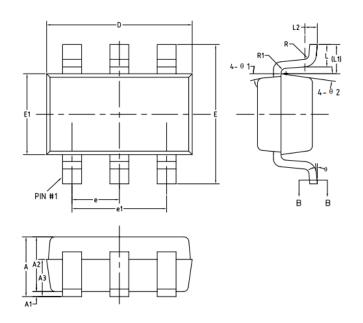
电池处于放电状态时,VM 端电压随着放电电流的增大而增大,当 VM 端电压高于 VEC 并持续了一段时间 TEC, 芯片认为出现了放电过流;当 VM 端电压高于 VSHORT 并持续了一段时间 TSHORT, 芯片认为出现了短路。上述 2 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,断开负载即可恢复正常状态。

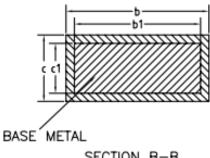
4. 充电过流检测


正常工作状态下的电池,在充电过程中,如果 VM 端子电压低于充电过流检测电压(VcHA),并且这种状态持续的时间超过充电过流检测延迟时间(TcHA),则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使 VM 端子电压高于充电过流检测电压(VcHA)时,充电过流状态被解除,恢复到正常工作状态。

5. 0V 充电功能

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(CO 端子打开),开始充电。这时,放电控制 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(Vop)时,SL 2112 系列 IC 进入正常工作状态.


■ 应用电路


■ 封装信息

SOT23-6 封装尺寸

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX	
Α	-	-	1.45	
A1	0	-	0.15	
A2	0.90	1.15	1.30	
A3	0.60	0.65	0.70	
ь	0.39	ı	0.49	
b1	0.35	0.40	0.45	
С	0.08	_	0.22	
c1	0.08	0.13	0.20	
D	2.80	2.90	3.00	
E	2.60	2.80	3.00	
E1	1.50	1.60	1.70	
e	0.85	0.95	1.05	
e1	1.80	1.90	2.00	
L	0.35	0.45	0.60	
L1	0.35	0.60	0.85	
L2	0.25BSC			
R	0.10	1	-	
R1	0.10	_	0.25	
θ	0	_	8*	
θ 1	7*	9*	11'	
θ 2	8*	10*	12*	

SECTION B-B

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 C DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.